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Optimal Time for Closing a Trading Position 
 

By Reza Habibi∗ 
 

In this paper, trading rules (strategies) on a specified financial asset at some 
future time are interpreted as contingent claims (financial derivatives). Therefore, 
their fair values are computable using the binomial tree technique. However, 
traders pay the price of financial asset at the current time to enter to trading. 
Clearly, it is a loss for traders. In this paper, first, hedging strategies are 
proposed. Then, using three procedures the optimal time for closing the trading 
position are derived. Mentioned procedures are based on optimal stopping time 
and stochastic dynamic programming, state space and a practical procedure 
which uses an adds-in of Excel software. Indeed, optimal closing time and related 
trading strategies are applied in discrete time price processes and in the binomial 
tree setting. Markov decision process (MDP) solution to the problem is proposed. 
Simulation results are studied and finally, a conclusion section is given.  
 
Keywords: binomial tree, fair value, financial derivative, Excel, hedging, MDP, 
optimal stopping, state space model, stochastic dynamic programming, trading 
strategies  

 
 
Introduction 
 

Trading is action of buying and selling financial assets in any financial markets 
to gain for himself or for any other person or firm. Some typical financial assets are 
stocks, equities, shares, exchange rates (forex), derivatives like options, futures, 
forward, swaps, and recently crypto-currencies such as bit-coin Traders can be 
considered as an investor which holds asset in a short duration. There are many 
technical concepts related to trading such as volume, standards, business, account 
of trading. Also, trading has many formats such as insider, day and intraday, fair, 
swing, Duluth, online, binary and momentum trading versions. There are many 
types of orders in trading such as market order, limit order, stop order, stop-limit, 
day, good-till-cancelled, immediate-or-cancelled, fill-or-kill and all-or-none orders.  

Traders bet on future value of financial asset such as stock. Suppose that, in the 
current time 𝑡𝑡 = 0, the price of financial asset is 𝑠𝑠0. Traders forecast 𝑠𝑠𝑇𝑇, the price 
of financial asset at some future time 𝑇𝑇 > 0, and based on their forecasts 𝑠̂𝑠𝑇𝑇, they 
do their trades including buying or selling. They use trading rule 𝑋𝑋 = 𝑓𝑓𝑇𝑇(𝑠𝑠𝑇𝑇). 
Indeed, the trading is a kind of betting in future prices of financial assets and 
therefore it is a kind of contingent claim (financial derivative). However, there is a 
contradiction, as follows.  

The fair price of trading rule 𝑋𝑋 at 𝑡𝑡 = 0 is 
 𝑓𝑓0 = 𝑒𝑒−𝑟𝑟𝑟𝑟𝐸𝐸𝑄𝑄(𝑋𝑋|𝐹𝐹0), 
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where 𝑟𝑟  and 𝑄𝑄  are the risk free rate and the risk neutral probability measure 
equivalent to physical measure 𝑃𝑃 which governs on 𝑠𝑠. Here, the 𝜎𝜎-field 𝐹𝐹0 contains 
all information of trader at time zero. Trading strategies usually contain hedging 
strategies at maturity T, to avoid bad probable events. Thus, it is natural to assume 
that 𝑓𝑓𝑇𝑇 = 𝑓𝑓(𝑠𝑠𝑇𝑇) ≤ 𝑠𝑠𝑇𝑇. Hence, using monotone property of expectation, it is seen 
that  𝑓𝑓0 ≤ 𝑠𝑠0 at which this is the loss of trader. Indeed, the trader pays 𝑠𝑠0 ≥  𝑓𝑓0 to 
enter the trade but he/she gains𝑓𝑓𝑇𝑇 ≤ 𝑠𝑠𝑇𝑇. Let 𝐿𝐿𝑇𝑇 = 𝑓𝑓𝑇𝑇 − 𝑠𝑠𝑇𝑇 denote the loss of trader 
at maturity. In this paper, it is interested to find the stopping time 𝜏𝜏∗, the minimizer 
of 𝐿𝐿𝜏𝜏∗. At 𝜏𝜏∗, the trader closes the trading position.  

As an example, consider the simple stop-loss strategy at which the trader orders 
to his/her broker to sell the financial asset at the price of 𝑠𝑠𝑇𝑇 if the trace of price be 
increasing in time and 𝑠𝑠𝑇𝑇 are bigger than the threshold 𝑚𝑚. Conversely, if the map of 
price is decreasing in time and it is expected that 𝑠𝑠𝑇𝑇 will be less than 𝑚𝑚, then trader 
orders to his/her broker to sell financial asset at price 𝑚𝑚. Therefore,  

 
𝑓𝑓(𝑠𝑠𝑇𝑇) = �

𝑠𝑠𝑇𝑇 𝑠𝑠𝑇𝑇 > 𝑚𝑚
𝑚𝑚 𝑠𝑠𝑇𝑇 ≤ 𝑚𝑚 

 
Equivalently, 𝑓𝑓(𝑠𝑠𝑇𝑇) = max(𝑠𝑠𝑇𝑇 , 𝑚𝑚) = max(𝑠𝑠𝑇𝑇 − 𝑚𝑚, 0) + 𝑚𝑚. The fair price 

of this trading strategy is the price of a call option with strike price 𝑚𝑚 and a bond 
with face value 𝑚𝑚. Here, it is interested to find a stopping time  𝜏𝜏∗ to minimize  

 
𝑚𝑚𝑚𝑚𝑚𝑚0≤𝜏𝜏≤𝑇𝑇𝐸𝐸𝑄𝑄(𝐿𝐿𝜏𝜏|𝐹𝐹0) = −𝑚𝑚𝑚𝑚𝑚𝑚0≤𝜏𝜏≤𝑇𝑇𝐸𝐸𝑄𝑄(−𝐿𝐿𝜏𝜏|𝐹𝐹0) = 

−𝑚𝑚𝑚𝑚𝑚𝑚0≤𝜏𝜏≤𝑇𝑇𝐸𝐸𝑄𝑄(𝑠𝑠𝜏𝜏 − 𝑓𝑓𝜏𝜏). 
 

The 𝑠𝑠0 is kept fixed as a non-random variable. This is a standard problem of 
optimal stopping techniques; see Shiryaev and Novikov (2008). In this paper, it is 
aimed to characterize the optimal closing time (stopping time) of a specified trading 
strategies to reduce the overall loss of trader. This kind of stopping time is derived 
for discreet time trading strategy. Then, hedging strategies are given. The state space 
formulation is proposed and the binomial tree version is studied. MDP solutions are 
given. Finally, a conclusion section is also given. 
 
 
Optimal Closing Time 
 

In this section, discrete time trading strategy based a binomial tree setting is 
studied and optimal closing time is obtained in constant and time varying volatilities 
cases. Assume that 𝑠𝑠𝑘𝑘 = 𝑠𝑠𝑘𝑘−1𝑥𝑥𝑘𝑘  where 𝑥𝑥𝑘𝑘 's are independent and identically 
distributed and suppose that there are 𝑘𝑘 days to maturity. Suppose that 𝑥𝑥𝑘𝑘 is 𝑢𝑢 with 
probability of 𝑝𝑝  and 𝑑𝑑  with probability of 1 − 𝑝𝑝 . Here, to avoid arbitrage 
opportunities, it is assumed that 𝑑𝑑 < 𝑒𝑒𝑟𝑟 < 𝑢𝑢, at which 𝑟𝑟 is a risk free rate. The risk 
neutral probability measure is given by 𝑄𝑄: (𝑝𝑝𝑟𝑟𝑟𝑟, 1 − 𝑝𝑝𝑟𝑟𝑟𝑟), 𝑝𝑝𝑟𝑟𝑟𝑟 = 𝑒𝑒𝑟𝑟−𝑑𝑑

𝑢𝑢−𝑑𝑑
, see Bjork 

(2009). Here, 𝑟𝑟𝑟𝑟  stands for risk neutral probability measure. The main tool for 
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solving optimal closing time (optimal stopping) is the dynamic programming (see 
Tijms 2012).  
 
Constant Volatility 
 

Here, assuming the constant volatility, the optimal closing time of trading for 
trader is derived. Let the current price of financial asset be 𝑠𝑠. Following Shiryaev 
and Zhitlukhin (2013), the dynamic programming based backward induction 
implies that  

 
𝑉𝑉𝑘𝑘(𝑠𝑠) = min �𝑠𝑠 − 𝑓𝑓, 𝐸𝐸𝑄𝑄(𝑉𝑉𝑘𝑘−1(𝑠𝑠𝑥𝑥𝑘𝑘)|𝐹𝐹𝑘𝑘)� , 𝑘𝑘 = 𝑇𝑇, … ,1, 

 
such that 𝑉𝑉0 = 𝑠𝑠 − 𝑓𝑓. The optimal time for closing the trading position is given as 
follows 
 

𝜏𝜏∗ = inf {𝑘𝑘, 𝑉𝑉𝑘𝑘(𝑠𝑠) = 𝑠𝑠 − 𝑓𝑓}. 
 

It is seen that 𝜏𝜏∗ is an early exercise time of an American type of financial 
derivative with pay-off function 𝑓𝑓(𝑠𝑠𝑇𝑇) at the maturity T which is an interesting 
result. Indeed, the stopping time 𝜏𝜏∗ can be determined in a binomial tree. As follows, 
a theoretical procedure based a stochastic dynamic programming is proposed.  

 
Procedure 1. Here, using approach of Ross (1982), pages 4,5, a solution is proposed. 
First, notice that   

𝑉𝑉𝑘𝑘(𝑠𝑠) = min�𝑠𝑠 − 𝑓𝑓, 𝑝𝑝𝑟𝑟𝑟𝑟𝑉𝑉𝑘𝑘−1(𝑠𝑠𝑠𝑠) + (1 − 𝑝𝑝𝑟𝑟𝑟𝑟)𝑉𝑉𝑘𝑘−1(𝑠𝑠𝑠𝑠)� , 𝑉𝑉0(𝑠𝑠) = 𝑠𝑠 − 𝑓𝑓. 
Let 𝑈𝑈𝑘𝑘(𝑠𝑠) = 𝑉𝑉𝑘𝑘(𝑠𝑠) − 𝑠𝑠. Then,  

𝑈𝑈𝑘𝑘(𝑠𝑠) = min(−𝑓𝑓, 𝑝𝑝𝑟𝑟𝑟𝑟𝑈𝑈𝑘𝑘−1(𝑠𝑠𝑠𝑠) + (1 − 𝑝𝑝𝑟𝑟𝑟𝑟)𝑈𝑈𝑘𝑘−1(𝑠𝑠𝑠𝑠) + 𝑠𝑠𝑠𝑠) , 𝑈𝑈0(𝑠𝑠) = −𝑓𝑓, 
where 𝐴𝐴 = 𝑝𝑝𝑟𝑟𝑟𝑟(𝑢𝑢 − 1) + (1 − 𝑝𝑝𝑟𝑟𝑟𝑟)(𝑑𝑑 − 1) = 𝑒𝑒𝑟𝑟 − 1 . Following Ross (1982), 
𝑈𝑈𝑘𝑘(𝑠𝑠) is decreasing in 𝑠𝑠. The proof is by induction on 𝑘𝑘. Thus, the optimal policy 
has the following form. To this end, suppose that the current price is 𝑠𝑠 and there are 
𝑘𝑘 days to maturity. 
Proposition 1 (Optimal policy). Suppose that there are increasing numbers 𝑠𝑠1 <
⋯ < 𝑠𝑠𝑛𝑛 < ⋯, then one should close the trading if and only if 𝑠𝑠𝑛𝑛 ≤ 𝑠𝑠.   
In the rest of this section, two other procedures are proposed. The procedure 2 
contains a practical solution based on Excel software. 
Procedure 2. Some adds-in of Excel software such as DerivaGem1 derive the fair 
price and early exercise time of some specified American type financial derivatives 
such as call or put options. However, a difficulty of this approach is that sometimes 
the specific financial derivative (trading strategy) is combination of some financial 
derivatives. The DerivaGem software specifies the early exercise for each 
component separately but the early exercise of combination of financial derivatives 
is unknown, yet. A natural question is how to modify the DerivaGem to value and 
show the early exercise for every arbitrary derivative? The answer is so simple. It is 
enough to find the early exercise of each component, separately, and then consider 

 
1See http://www.prenhall.com/mischtm/support_fr.html. 
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the common early exercises, as early exercise of financial derivative (trading 
strategy).  
 
State Space Modeling 
 

The discussion of part 2.1 relies on strong assumption of constant volatility, 
which is not correct in practice. To overcome this difficulty, Liao (2005) considered 
a GARCH(1,1) series for squared volatility ℎ𝑡𝑡 = 𝑣𝑣𝑡𝑡

2  of financial asset. This 
equation plays the role of state equation in a state space modeling which leads to a 
Bayes filtering approach. Here, following Liao (2005), assume that 𝑓𝑓𝑡𝑡 = 𝑓𝑓𝑡𝑡(𝑠𝑠𝑡𝑡, 𝑣𝑣𝑡𝑡) 
represent the binomial tree (or Black-Scholes, hereafter BS) price of a financial 
derivative. However, because of wrong assumption of constant volatility, there is a 
deviation 𝜀𝜀𝑡𝑡 for price computed using standard BS formula. Thus,  

 
𝑓𝑓𝑡𝑡 = 𝐵𝐵𝐵𝐵(𝑣𝑣𝑡𝑡) + 𝜀𝜀𝑡𝑡. 

 
Here, 𝜀𝜀𝑡𝑡 's are independent and identically distributed random variables with 

common distribution with zero mean and variance 𝜎𝜎𝜀𝜀
2. This equation plays the role 

of measurement equation of state space model. Let ℎt be an GARCH(1,1) series 
given by  

 
ℎt = ω + αrt

2 + βℎt−1 + 𝜁𝜁𝑡𝑡 . 
 

This equation plays the role of state equation. Here, it is assumed that 𝜁𝜁𝑡𝑡 's are 
independent and normally distributed random variables with zero mean and 
variance 𝜎𝜎𝜁𝜁

2 . It is assumed that 𝜀𝜀𝑡𝑡 's and 𝜁𝜁𝑡𝑡 's are statistically independent. Also, 
assumed that ω, α, β > 0  and α + β < 1. This section can be considered as the 
Liao (2005) work in European derivatives to American format. Here, 𝑟𝑟𝑡𝑡 's are returns 
of financial asset which is underlying asset and derivative is defined basis on it.  

As follows, based on Bayes rule, updating procedures are derived. Notice that 
𝑓𝑓𝑡𝑡 = 𝐵𝐵𝐵𝐵(𝑣𝑣𝑡𝑡) + 𝜀𝜀𝑡𝑡 = 𝐵𝐵𝐵𝐵∗(ℎ𝑡𝑡) + 𝜀𝜀𝑡𝑡 , 𝜀𝜀𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝜀𝜀

2) , 𝐵𝐵𝐵𝐵∗(𝑥𝑥) = 𝐵𝐵𝐵𝐵(√𝑥𝑥 ), ℎ𝑡𝑡 = 𝑣𝑣𝑡𝑡
2 , 

𝜇𝜇𝑡𝑡 = 𝐵𝐵𝐵𝐵∗(ℎ𝑡𝑡) . Also, it is known that ℎt = ω + αrt
2 + βℎt−1 + 𝜁𝜁𝑡𝑡  and 

𝜁𝜁𝑡𝑡~𝑁𝑁(0, 𝜎𝜎𝜁𝜁
2). Thus, 𝑓𝑓𝑡𝑡|ℎ𝑡𝑡~𝑁𝑁(𝜇𝜇𝑡𝑡, 𝜎𝜎𝜀𝜀

2) and given ℎt−1 and 𝑟𝑟𝑡𝑡 , then ℎ𝑡𝑡~𝑁𝑁(𝜃𝜃𝑡𝑡, 𝜎𝜎𝜁𝜁
2), 

where 𝜃𝜃𝑡𝑡 = ω + αrt
2 + βℎt−1. Using the Bayes rule, it is seen that  

 
𝜋𝜋(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝑓𝑓𝑡𝑡) ∝ 𝜋𝜋(𝑓𝑓𝑡𝑡|ℎ𝑡𝑡)𝜋𝜋(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝑟𝑟𝑡𝑡). 

 
Notice that  
 

− log�𝜋𝜋(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝑓𝑓𝑡𝑡)� ∝
(𝐵𝐵𝐵𝐵∗(ℎ𝑡𝑡) − 𝑓𝑓𝑡𝑡)2

𝜎𝜎𝜀𝜀
2 +

(ℎ𝑡𝑡 − 𝜃𝜃𝑡𝑡)2

𝜎𝜎𝜁𝜁
2 . 

 
By differentiating with respect to ℎ𝑡𝑡, it is seen that the maximum a posteriori 

(MAP) estimate of ℎ𝑡𝑡 satisfies in the following updating equation 
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𝛥𝛥(ℎ𝑡𝑡) +
𝜎𝜎𝜀𝜀

2

𝜎𝜎𝜁𝜁
2 ℎ𝑡𝑡 = 𝑓𝑓𝑡𝑡 +

𝜎𝜎𝜀𝜀
2

𝜎𝜎𝜁𝜁
2 𝜃𝜃𝑡𝑡 , 

 
where 𝛥𝛥 is the delta Greek letter of financial derivative. The following proposition 
summaries the above discussion. Numerical methods say Newton-Raphson method 
may be applied to solve this equation.  
 
Proposition 1. The MAP estimate of ℎ𝑡𝑡 satisfies in the following updating equation 
 

𝛥𝛥(ℎ𝑡𝑡) +
𝜎𝜎𝜀𝜀

2

𝜎𝜎𝜁𝜁
2 ℎ𝑡𝑡 = 𝑓𝑓𝑡𝑡 +

𝜎𝜎𝜀𝜀
2

𝜎𝜎𝜁𝜁
2 𝜃𝜃𝑡𝑡 , 

 
where 𝛥𝛥 is the delta Greek letter of financial derivative.   
 
Some Orders 
 

In this section, it is shown that most of trading order strategies can be 
represented as functions 𝑓𝑓(𝑠𝑠, 𝑐𝑐, 𝑝𝑝, 𝑏𝑏) where 𝑐𝑐, 𝑝𝑝, 𝑠𝑠, 𝑏𝑏 are call and put options, stock, 
and bond, respectively. A widely used type of 𝑓𝑓(𝑠𝑠, 𝑐𝑐, 𝑝𝑝, 𝑏𝑏) is the linear functions 

 
𝑓𝑓(𝑠𝑠, 𝑏𝑏) = 𝑎𝑎1𝑐𝑐 + 𝑎𝑎2𝑝𝑝 + 𝑎𝑎3𝑠𝑠 + 𝑎𝑎4𝑏𝑏, 

 
Here, 𝑎𝑎𝑖𝑖, 𝑖𝑖 = 1,2,3,4 are real numbers. For more details about trading orders 

see Nasdaq trader (2014). In each strategy, 𝑚𝑚's are suitable thresholds defined in the 
order type.   

 
a) Market order. A market order is an order to buy or sell a stock at the best 

available price. Generally, this type of order will be executed immediately. 
However, the price at which a market order will be executed is not guaranteed. It is 
important for investors to remember that the last-traded price is not necessarily the 
price at which a market order will be executed. In fast-moving markets, the price at 
which a market order will execute often deviates from the last-traded price or “real 
time” quotes. 𝑓𝑓(𝑠𝑠𝑇𝑇) of this type of order can be written as  
 

𝑓𝑓(𝑠𝑠𝑇𝑇) = min(𝑠𝑠𝑇𝑇 , 𝑚𝑚) = 𝑠𝑠𝑇𝑇 − max(𝑠𝑠𝑇𝑇 − 𝑚𝑚, 0). 
 
That is, this strategy is a combination of a stock and call option on that specified 

stock.  
 
b) Limit order. A limit order is an order to buy or sell a stock at a specific price 

or better. A buy limit order can only be executed at the limit price or lower, and a 
sell limit order can only be executed at the limit price or higher. A limit order is not 
guaranteed to execute. A limit order can only be filled if the stock’s market price 
reaches the limit price. While limit orders do not guarantee execution, they help 
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ensure that an investor does not pay more than a predetermined price for a stock. 
Here, 𝑓𝑓(𝑠𝑠𝑇𝑇) = max(𝑠𝑠𝑇𝑇 , 𝑚𝑚) = max(𝑠𝑠𝑇𝑇 − 𝑚𝑚, 0) + 𝑚𝑚.  

 
c) Stop order. A stop order, also referred to as a stop-loss order, is an order to 

buy or sell a stock once the price of the stock reaches a specified price, known as 
the stop price. When the stop price is reached, a stop order becomes a market order. 
A buy stop order is entered at a stop price above the current market price. Investors 
generally use a buy stop order to limit a loss or to protect a profit on a stock that they 
have sold short. A sell stop order is entered at a stop price below the current market 
price. Investors generally use a sell stop order to limit a loss or to protect a profit on 
a stock that they own. Here, 𝑓𝑓(𝑠𝑠𝑇𝑇) = max(𝑠𝑠𝑇𝑇 , 𝑚𝑚).  

 
d) Stop-limit order. A stop-limit order is an order to buy or sell a stock that 

combines the features of a stop order and a limit order. Once the stop price is 
reached, a stop-limit order becomes a limit order that will be executed at a specified 
price (or better). Te benefit of a stop-limit order is that the investor can control the 
price at which the order can be executed. In this case,  

 

𝑓𝑓(𝑠𝑠𝑇𝑇) = �min (𝑠𝑠𝑇𝑇 , 𝑚𝑚2) 𝑠𝑠𝑇𝑇 > 𝑚𝑚1
𝑚𝑚1 𝑠𝑠𝑇𝑇 ≤ 𝑚𝑚1

 

 
Let 𝑔𝑔(𝑠𝑠𝑇𝑇) = min (𝑠𝑠𝑇𝑇 , 𝑚𝑚2). Thus, this order can be considered as a stop order 

defined on 𝑔𝑔(𝑠𝑠𝑇𝑇).  
 
e) Fill-or-kill order. Another common special order type is Fill-or-Kill (FOK) 

order. An FOK order is an order to buy or sell a stock that must be executed 
immediately in its entirety; otherwise, the entire order will be cancelled (i.e., no 
partial execution of the order is allowed). Here,  

 
𝑓𝑓(𝑠𝑠𝑇𝑇) = �𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 𝑠𝑠𝑇𝑇 = 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚

0 otherwise 
 
f) Market if touched. An MIT (market-if-touched) is an order to buy (or sell) an 

asset below (or above) the market. This order is held in the system until the trigger 
price is touched, and is then submitted as a market order. Again, 𝑓𝑓(𝑠𝑠𝑇𝑇) =
max(𝑠𝑠𝑇𝑇 − 𝑚𝑚, 0) − 𝑚𝑚.  
 
 
Other DP Applications 
 

In this section, other applications of dynamic programming (DP) technique in 
trading problem are studied.  
 
Hedging Strategy 
 

Although, the main focus of paper is the finding of optimal closing time of a 
trading position. However, in this section, first, the optimal portion 𝛼𝛼 of financial 
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asset 𝑠𝑠 which is contributed in trading by traders is found. Indeed, we want to find 
𝛼𝛼  to minimize 𝑓𝑓 − 𝛼𝛼𝛼𝛼  in each time  𝑡𝑡 , under the physical probability 
measure 𝑃𝑃: (𝑝𝑝𝑝𝑝ℎ𝑠𝑠, 1 − 𝑝𝑝𝑝𝑝ℎ𝑠𝑠), where notation 𝑝𝑝ℎ𝑠𝑠 stands for the physical. Here, it is 
assumed that the trader is a risk neutral one and 𝑉𝑉0(𝑥𝑥) = log (𝑥𝑥). Notice that 

 
𝑉𝑉𝑘𝑘(𝑓𝑓 − 𝛼𝛼𝛼𝛼 ) = min0≤α≤1 �𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑉𝑉𝑘𝑘−1(𝑓𝑓𝑢𝑢 − 𝛼𝛼𝛼𝛼𝛼𝛼) + (1 − 𝑝𝑝𝑝𝑝ℎ𝑠𝑠)𝑉𝑉𝑘𝑘−1(𝑓𝑓𝑑𝑑 − 𝛼𝛼𝛼𝛼𝛼𝛼)�. 
 
Assuming, 𝑢𝑢𝑢𝑢 = 1, it is seen that 
 

𝛼𝛼 =
1
𝑠𝑠

�𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑢𝑢𝑓𝑓𝑑𝑑 + �1 − 𝑝𝑝𝑝𝑝ℎ𝑠𝑠�𝑑𝑑𝑓𝑓𝑢𝑢�. 
 
Here, 𝑓𝑓𝑑𝑑 , 𝑓𝑓𝑢𝑢 are values of derivatives using upper and lower future values 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠 of 
future price, of financial asset, in the trading. The following proposition summarizes 
the above discussion.  
 
Proposition 2. The optimal hedge ratio is given by  

𝛼𝛼 = 1
𝑠𝑠

�𝑝𝑝𝑝𝑝ℎ𝑠𝑠𝑢𝑢𝑓𝑓𝑑𝑑 + �1 − 𝑝𝑝𝑝𝑝ℎ𝑠𝑠�𝑑𝑑𝑓𝑓𝑢𝑢�, 
where, 𝑓𝑓𝑑𝑑 , 𝑓𝑓𝑢𝑢 are values of derivatives using upper and lower future values 𝑠𝑠𝑠𝑠, 𝑠𝑠𝑠𝑠 
of future price, of financial asset, in the trading under the physical probability 
measure 𝑃𝑃: (𝑝𝑝𝑝𝑝ℎ𝑠𝑠, 1 − 𝑝𝑝𝑝𝑝ℎ𝑠𝑠). 
 
MDP Modeling 
 

 In this section, the MDP modeling and corresponding solution is proposed in 
a given stock market. Markov decision processes model decision making in 
stochastic, sequential environments. The essence of the model is that a decision 
maker, or agent, inhabits an environment, which changes state randomly in response 
to action choices made by the decision maker. The state of the environment affects 
the immediate reward obtained by the agent, as well as the probabilities of future 
state transitions. The agent's objective is to select actions to maximize a long-term 
measure of total reward. This article describes MDPs, an example application, 
algorithms for finding optimal policies in MDPs, and useful extensions to the basic 
model (see Ross 1982). 

To this end, consider a specified stock 𝑠𝑠, which generates cash flow of gains 
𝑓𝑓(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖) , at time 𝑖𝑖 ≥ 1 , where 𝑢𝑢𝑖𝑖 = 𝜋𝜋(𝑠𝑠𝑖𝑖)  and 𝜋𝜋  is paying policy. The state 
equation is given by 𝑠𝑠𝑖𝑖+1 = 𝑔𝑔(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖) . The present value of stock is given by 
𝐸𝐸 ∑ 𝛾𝛾𝑖𝑖𝑓𝑓(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖)∞

𝑖𝑖=0  where, 𝛾𝛾 = 1/(1 + 𝑟𝑟), is discounted factor and 𝑟𝑟 is discounted 
rate. It is interested to maximize 𝐸𝐸 ∑ 𝛾𝛾𝑖𝑖𝑓𝑓(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖)∞

𝑖𝑖=0  with respect to policy 𝜋𝜋. This 
problem defines a dynamic programming problem defined by value function as a 
recursive equation 

 
𝑉𝑉(𝑠𝑠𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋�𝑓𝑓(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖) + 𝛾𝛾𝛾𝛾�𝑔𝑔(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖)��. 

 
The following proposition summarizes the above discussion. 
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 Proposition 3. The optimal policy is given by the argmax of following value function 
 

𝑉𝑉(𝑠𝑠𝑖𝑖) = 𝑚𝑚𝑚𝑚𝑚𝑚𝜋𝜋�𝑓𝑓(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖) + 𝛾𝛾𝛾𝛾�𝑔𝑔(𝑠𝑠𝑖𝑖, 𝑢𝑢𝑖𝑖)��, 
 
where 𝛾𝛾 = 1/(1 + 𝑟𝑟), is discounted factor and 𝑟𝑟 is discounted rate. 
The following practical algorithm summarizes the above theoretical discussions.  
 
Algorithm  

1. Derive the 𝑓𝑓(𝑠𝑠𝑇𝑇) using formulas of Section 2.3, for special strategy and 
compute the over-price that the trader should pay. Choose the minimum 
over-price order.  

2. Assuming constant volatility, Using a binomial tree and based on dynamic 
programming in backward induction format, compute the optimal stopping 
as closing time of a specified trading position, using formulas in section 2.1.  

3. Assuming volatilities behave as a GARCH series and using the state space 
filtering technique in section 2.2, repeat the point 2.  

4. Hedging strategies can be applied to remove the risk of a specified trading 
position. As well as, MDP techniques are applicable for finding the optimal 
dividend policy for policy makers as well as choosing the best stocks with 
optimal dividend policy for traders, see formulas in section 3.1.  

 
 
Data Analysis 
 

In this section, the above theoretical results are applied for trading strategy 
orders. Consider the data set of 122 daily stock price of Apple Corporation for time 
period of 10 August 2017 to 2 February 2018.  

 
Part 1 of algorithm. At the beginning (time zero), a trader buys one share of Apple 
Co. stock at the price 𝑠𝑠0 = 78.97. The daily volatility estimate is 𝜎𝜎 = 0.0080454. 
Thus, the volatility per year is √254 × 0.0080454 = 0.1282.  The mentioned 
trader considers a stop loss strategy with 𝑚𝑚 = 83. The daily risk free rate is 2.2

254
%. 

The maturity is 122
254

. Here, 𝑓𝑓(𝑠𝑠𝑇𝑇) = max(𝑠𝑠𝑇𝑇 , 𝑚𝑚) = max(𝑠𝑠𝑇𝑇 − 𝑚𝑚, 0) + 𝑚𝑚.  
 
Part 2 of algorithm. Thus, using the binomial tree tool of DerivaGem software, the 
actual price of call option max(𝑠𝑠𝑇𝑇 − 𝑚𝑚, 0) at time zero is 1.5289. Also, the price of 
bond 𝑚𝑚  at time zero is 𝑚𝑚𝑒𝑒−𝑟𝑟𝑟𝑟 = 83𝑒𝑒− 2.2

100×122
254 = 82.127. The fair price of this 

trading position is 82.127 + 1.5289 = 83.656. Hence, the over-price paid for this 
strategy is −4.686 which produces an arbitrage opportunity. The binomial tree is 
plotted in Figure 1.  
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Figure 1. Binomial Tree of Call Option 

 
 

The optimal closing times of this strategy are only at the maturity. The delta of 
this trading position is 0.3372. So, it is enough to buy 0.3372 shares of stocks to 
delta neutral hedge.  
 
Part 3 of algorithm. Next, consider a GARCH(1,1) series for the volatility given by 
 

ht = 0.00087107 + 1.06153194rt−1
2 , 

 
where 𝑟𝑟𝑡𝑡 = 𝑠𝑠𝑡𝑡−𝑠𝑠𝑡𝑡−1

𝑠𝑠𝑡𝑡−1
. Here, the state space filter is applied. To derive  𝜎𝜎𝜀𝜀

2 , the 
difference between empirical and theoretical (obtained using BS) prices of financial 
derivative is obtained. Then, the sample variance of these differences is an estimate 
of 𝜎𝜎𝜀𝜀

2 which is 5.52× 10−9. Indeed, 𝑚𝑚 is chosen such that there is a call option for 
that maturity. Then, to estimate 𝜎𝜎𝜁𝜁

2, sequential empirical estimates of volatilities are 
derived by 1

𝑡𝑡
∑ 𝑟𝑟𝑖𝑖

2𝑡𝑡
𝑖𝑖=1  and its differences between htobtained by a GARCH series 

produces  𝜁𝜁𝑡𝑡 's. Then, their sample variance is an estimate of 𝜎𝜎𝜁𝜁
2  which is 

6.61× 10−8.  
 
Part 4 of algorithm. Here, 𝛥𝛥(ℎ𝑡𝑡) = 𝛷𝛷(𝑑𝑑1), where Φ is the cumulative distribution 

function of standard normal distribution and 𝑑𝑑1 =
log� 𝑠𝑠

𝑚𝑚�+�𝑟𝑟+0.5𝑣𝑣2�(𝑇𝑇−𝑡𝑡)

𝑣𝑣√𝑇𝑇−𝑡𝑡
. The 
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MAP estimate of volatility and the fair price of stop-loss strategy are 1.84, 8.35, 
respectively, which considerably reduces the arbitrage opportunity.  
 
 
Conclusions 
 

End users of this paper are market players, academics and financial analysts. 
This paper is valuable for academics since it relates the fair value of a financial asset 
such as stock by modern financial engineering such as derivative pricing tools like 
binomial trees. Financial analysts compute the fair values shares, stocks, financial 
assets such as gold, and obtain accurate relative prices in each economy. Market 
users such as traders, hedgers and even gamblers are satisfied since the actual values 
of assets are found and trading positions are based on better understood prices and 
robust price equilibriums are proposed. Beside this, optimal exist or entrance of sell 
or buy positions are given which is too valuable for traders.   

In more detail, traders choose strategy to buy or sell at the maturity a financial 
asset such as stock. Indeed, they choose a financial derivative. Then, the fair price 
of is computable using Black-Scholes or binomial tree techniques. However, they 
pay the whole price of financial asset at the zero time. This over-price fee destroys 
the financial stability. Sometimes, it produces risk free return as an arbitrage 
opportunity. In this paper, this over-price fee is calculated and some hedging 
strategies are given. Beside this, using the Bayesian technique, the time varying 
volatility problems are solved.  

Mispricing causes a divergence between the market price of a security and the 
fundamental value of that security. The law of one price states that the market price 
of a security is equal to the present discounted value of all cash flows generated by 
the security. However, it is not always the case as asset prices can sometimes diverge 
from their fundamental values. The divergence can be due to a financial crisis or a 
current event in the economy. This paper discusses the mispricing of financial 
assets, similar ideas in this regard can be found in Binsbergen et al. (2023) and 
references therein.  
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